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Abstract
Two-dimensional parametrized surfaces immersed in the su(N) algebra are
investigated. The focus is on surfaces parametrized by solutions of the
equations for the CP N−1 sigma model. The Lie-point symmetries of the
CP N−1 model are computed for arbitrary N. The Weierstrass formula for
immersion is determined and an explicit formula for a moving frame on a
surface is constructed. This allows us to determine the structural equations
and geometrical properties of surfaces in R

N2−1. The fundamental forms,
Gaussian and mean curvatures, Willmore functional and topological charge
of surfaces are given explicitly in terms of any holomorphic solution of the
CP 2 model. The approach is illustrated through several examples, including
surfaces immersed in low-dimensional su(N) algebras.

PACS numbers: 02.40.Hw, 02.20.Sv, 02.30.Ik

1. Introduction

Group theoretical methods have proven to be very useful for studying surfaces immersed in
multi-dimensional spaces and for computing their main geometric characteristics [1–5]. It was
shown in [6–9] that the problem of Weierstrass immersion of two-dimensional smooth surfaces
in multi-dimensional Euclidean spaces is related to the surfaces in Lie algebras associated with
the CP N−1 models. The main feature of this approach is that it allows one to replace the
methods based on Dirac-type equations by a formalism connected with completely integrable
CP N−1 models. The task of finding an increasing number of surfaces is related to choosing a
suitable Lie representation of the CP N−1 model. Group analysis makes it possible to construct
algorithms proceeding directly from the equations of the CP N−1 model and without referring
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to any additional considerations. The techniques for constructing two-dimensional surfaces
immersed in su(N) algebras, obtained from integrable models, are better understood for low-
dimensional CP N−1 models. In that case, the geometric features of surfaces so obtained are
interesting and the subject of ongoing study. A review of recent developments related to
integrable models can be found in [10–13].

Over the last century and a half, the Weierstrass formula for the immersion of surfaces in
Lie groups, Lie algebras and homogeneous spaces has been used extensively in various areas
of mathematics, physics, chemistry and biology. We now list some of the most important
examples.

In mathematics, the topic is of central importance in the formulation of the classical
theory of surfaces. In particular, immersions are useful for studying surfaces with techniques
of completely integrable continuous and discrete systems, as well as for the development and
application of numerical tools [14, 15]. A description of the monodromy of solutions of
Painlevé equations is yet another important application [16].

In physics, the concept has numerous applications in, e.g., two-dimensional gravity [17],
field and string theory [18, 19], statistical physics (e.g., growth of crystals, surface waves,
dynamics of vortex sheets, the two-body correlation function of the two-dimensional Ising
model [20]), fluid dynamics (e.g., motion of boundaries between regions of differing densities
and velocities [21]), plasma physics (geometry of magnetic surfaces and constant pressure
surfaces in various fusion devices such as tokomaks, stellarators, magnetic mirrors [22]).

In chemistry, descriptions of energy and momentum transport along a polymer molecule
constitute a significant area of application for the theory of immersions [23, 24]. In biology,
the theory is frequently used in the study of the model for the Canham–Helfrich membrane
and its continuous deformations [25, 26].

In general, the algebraic approach to the equations describing surface immersion has been
proven to be very fruitful from a computational point of view. In addition, the geometric
approach is of primary importance to the derivation and characterization of the governing
equations for related phenomena in physics and other applied sciences.

This paper follows up on research in [6], where surfaces immersed in su(N + 1) algebras
obtained via CP N models were investigated. We generalize the results and also correct some
formulae. To be precise, the new results presented in this paper include the Lie-point symmetry
algebra of the CP N−1 model for arbitrary N. We also give new examples of surfaces immersed
in a low-dimensional su(N) algebra invariant under the scaling symmetries whose Gaussian
curvature always vanishes. We delve deeply into the geometrical aspects of surfaces in su(3)

obtained from the CP 2 model. For that case, we identify the moving frame and the structural
equations, as well as the Willmore functional and the topological charge. The main goal of
this paper is to provide a comprehensive, self-contained approach to the subject.

The paper is organized as follows. In section 2, we briefly review some basic notions and
properties concerning the Euler–Lagrange equations associated with the CP N−1 models. In
section 3, we discuss the Weierstrass formula for immersion in connection with the CP N−1

model, derive the induced metric and compute the scalar curvature. Section 4 is devoted to
the Lie-point symmetries of the equations of the CP N−1 model for arbitrary N. Section 5
covers the analysis of the immersion of surfaces in the su(3) algebra arising from the CP 2

model. In section 6, we investigate the Weierstrass aspects for the immersion of surfaces in the
su(2) and su(3) algebras which are associated with the CP 1 and CP 2 models, respectively.
Section 7 deals with applications of the Weierstrass formula for the immersion of surfaces
in the su(2) and su(3) algebras, as well as surfaces immersed in a low-dimensional su(N)

algebra invariant under the scaling symmetries.
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2. The Euler–Lagrange equations associated with the CP N−1 sigma models

To keep the paper self-contained, we briefly review basic notions and properties of the CP N−1

sigma models (see, e.g., [10, 27, 28] and references therein). The domain of definition for the
sigma model is assumed to be an open, connected and simply connected set � ⊂ C with the
Euclidean metric

ds2 = dξ dξ̄ = (dξ 1)2 + (dξ 2)2, ξ = ξ 1 + iξ 2, (1)

where ξ and ξ̄ are local coordinates in �. In the case of the CP N−1 models the target space
is an (N − 1)-dimensional complex projective space CP N−1, which is defined as the set of all
complex lines in C

N . The manifold structure on it is defined by an open covering

Uk = {[z] | z∈ C
N, zk �= 0}, k = 1, . . . , N, (2)

where [z] = span{z} and the coordinate maps hk : Uk → C
N−1 are defined by

hk(z) =
(

z1

zk

, . . . ,
zk−1

zk

,
zk+1

zk

, . . . ,
zN

zk

)
. (3)

We are interested in maps of the form [z] : � → CP N−1, which are stationary points of the
action functional

S = 1

4

∫
�

(Dµz)†(Dµz) dξ dξ̄ , z† · z = 1. (4)

Here, Dµ and Dµ (µ = 1, 2) are the covariant derivatives acting on z : � → C
N , defined by

the formula

Dµz = ∂µz − (z† · ∂µz)z, (5)

where ∂µ = ∂ξµ . The action S does not depend on the choice of a representative of the class [z].
As usual, the symbol † denotes Hermitian conjugation, whereas the Hermitian inner product
of z = (z1, . . . , zN) and w = (w1, . . . , wN) in C

N is denoted by

〈z,w〉 = z† · w =
N∑

j=1

z̄jwj . (6)

Introducing

z = f

|f | , |f | = (f † · f )
1
2 , (7)

the action functional (4) can be expressed as

S = 1

4

∫
�

1

f † · f
(∂f †P ∂̄f + ∂̄f †P∂f ) dξ dξ̄ , (8)

where ∂ and ∂̄ denote the partial derivatives with respect to ξ and ξ̄ , respectively, i.e.,

∂ = 1
2 (∂ξ 1 − i∂ξ 2), ∂̄ = 1

2 (∂ξ 1 + i∂ξ 2). (9)

The N ×N matrix P is an orthogonal projector on the orthogonal complement of the complex
line in C

N . Therefore,

P = IN − 1

f † · f
f ⊗ f †, (10)

where IN is the N ×N identity matrix. Since P is an orthogonal projector it has the properties

P † = P, P 2 = P. (11)

3
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The map [z] is determined by a solution of the Euler–Lagrange equations which are
associated with the action (8). In the homogeneous coordinates f , the equations of motion
take the form of a conservation law

∂K − ∂̄K† = 0, (12)

where K and K† are N × N matrices given by

K = [∂̄P , P ] = 1

f † · f
(∂̄f ⊗ f † − f ⊗ ∂̄f †) +

f ⊗ f †

(f † · f )2
(∂̄f † · f − f † · ∂̄f ),

K† = −[∂P, P ] = 1

f † · f
(f ⊗ ∂f † − ∂f ⊗ f †) +

f ⊗ f †

(f † · f )2
(∂f † · f − f † · ∂f ).

(13)

Using the projector, the Euler–Lagrange equations (12) can also be written in the form of
a conservation law

∂[∂̄P , P ] + ∂̄[∂P, P ] = 0. (14)

Through explicit calculation one can verify that the complex-valued functions

J = 1

f † · f
∂f †P∂f, J̄ = 1

f † · f
∂̄f †P ∂̄f (15)

satisfy

∂̄J = 0, ∂J̄ = 0, (16)

for any solution f of the equations of motion (12).
Note that the action (4), as well as J and J̄ , are invariant under a global U(N)

transformation, i.e., f → uf , where u ∈ U(N). Due to this invariance, without loss of
generality, we can set one of the components of the vector field f equal to 1. For instance,
f1 = 1. Consequently, the CP N−1 model can be expressed in one less variable through the
relation

wi−1 = fi

f1
, i = 2, . . . , N − 1. (17)

3. The Weierstrass formula for immersion

For a given projector P satisfying the conservation law (14), we give the analytical description
of a 2D smooth orientable surface F immersed in the su(N) algebra. This is accomplished
by constructing an exact su(N) matrix-valued 1-form dX for which its ‘potential’, which is
a matrix-valued 0-form X, determines a surface immersed in the su(N) algebra. Once the
0-form X is calculated, we can treat the components of X as the coordinates of a surface in
su(N) and, hence, we can compute an explicit formula for immersion. In what follows, we
shall refer to this as the generalized Weierstrass formula for immersion. Next, we investigate
some geometrical properties of the surface F in the su(N) algebra.

In order to construct and investigate surfaces in multi-dimensional spaces by analytical
methods it is convenient to identify the su(N) algebra with the (N2−1)-dimensional Euclidean
space through the relation

R
N2−1 � su(N). (18)

For the sake of uniformity, we use the following definition of scalar product on su(N)

〈A,B〉 = − 1
2 tr(AB), (19)

where A,B ∈ su(N).
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Let us assume that the matrix K in (13) is constructed from a solution P of the Euler–
Lagrange equation (14) defined on some connected and simply connected domain � ⊂ C.
According to Poincaré’s lemma, there then exists a closed matrix-valued 1-form,

dX = i(K† dξ + K dξ̄ ), (20)

which is also exact and takes its values in the su(N) algebra of skew-Hermitian matrices. This
means that X is a well-defined su(N) real-valued function on � and

∂X = iK†, ∂̄X = iK. (21)

It follows from the closedness of the 1-form dX that the integral

i
∫

γ

(K† dξ + K dξ̄ ) = X(ξ, ξ̄ ) (22)

is locally independent of the path of integration. As a matter of fact, the integral only depends
on the end points of the curve γ in C.

The integral (22) defines a mapping

X : � 	 (ξ, ξ̄ ) → X(ξ, ξ̄ ) ∈ su(N), (23)

which is called the generalized Weierstrass formula for immersion [6, 7].
As a consequence of (23), we can determine a surface F in su(N) from a solution f of

the Euler–Lagrange equation (12) defined on the domain � ⊂ C.
The complex tangent vectors to a surface F are given by (21) using (13). For the

components of the induced metric one gets

gξξ ≡ (∂X, ∂X) = −J, gξ̄ ξ̄ ≡ (∂̄X, ∂̄X) = −J̄ ,

gξ ξ̄ = gξ̄ξ ≡ (∂X, ∂̄X) = q,
(24)

where J and J̄ are holomorphic functions defined in (15) and the quantity q is a positive
real-valued function given by

q = 1

f † · f
∂̄f †P∂f � 0. (25)

Thus, the first fundamental form of a surface F takes the form

I = −J dξ 2 + 2q dξ dξ̄ − J̄ dξ̄ 2. (26)

Using the Schwartz inequality, it was shown in [6, 7] that this first fundamental form (26) is
positive definite.

The scalar curvature is given by

K = 1

2
√

g
∂̄

[
q√
g

∂ ln

(
−q2

J

)]
, if J �= 0 (27)

and

K = −q−1∂̄∂ ln q, if J = 0, (28)

where

g = det(gij ) = |J |2 − q2, (29)

and the indices i and j stand for ξ and ξ̄ , respectively.
Let us now discuss the existence of certain classes of surfaces in the su(N) algebra

when the CP N−1 equations are subjected to specific differential constraints (DCs). These
constraints allow us to reduce the overdetermined system to a system admitting first integrals.
Doing so considerably simplifies the process of solving the initial CP N−1 equations (12).
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Consequently, certain classes of non-splitting solutions can be constructed and they provide
us with an explicit, simplified form of the Weierstrass formula for the immersion of a surface
in su(N).

Proposition 1. If the complex-valued vector function

C 	 ξ → f (ξ) ∈ C
N\{0} (30)

satisfies both equations (12) for the CP N−1 model equations and the differential constraints

f † · ∂f − ∂f † · f = 0, f † · ∂̄f − ∂̄f † · f = 0, (31)

then the generalized Weierstrass formula for the immersion of a surface F in the su(N)

algebra has the form

X(ξ, ξ̄ ) = i
∫

γ

f ⊗ ∂f † − (∂f † · f )P̃

f † · f
dξ +

∂̄f ⊗ f † − (f † · ∂̄f )P̃

f † · f
dξ̄ , (32)

where P̃ = IN − P . The first fundamental form is given by

I = −J1 dξ 2 + 2

(
∂̄f † · ∂f

f † · f
− (∂̄f † · f )(f † · ∂f )

(f † · f )2

)
dξ dξ̄ − J̄1 dξ̄ 2, (33)

where J1 and J̄1 are holomorphic functions,

J1 = ∂f † · ∂f

f † · f
−

(
f † · ∂f

f † · f

)2

, J̄1 = ∂̄f † · ∂̄f

f † · f
−

(
∂̄f † · f

f † · f

)2

, (34)

which satisfy

∂̄J1 = 0, ∂J̄1 = 0, (35)

whenever (12) and (31) hold.

Proof. If we append the two DCs in (31) to the CP N−1 equations (12) then the matrices K
and K† in (13) become

K1 = 1

f † · f
(∂̄f ⊗ f † − f ⊗ ∂̄f †),

K
†
1 = 1

f † · f
(f ⊗ ∂f † − ∂f ⊗ f †).

(36)

Hence, the Weierstrass formula for immersion takes the form

X(ξ, ξ̄ ) = i
∫

γ

(
K

†
1dξ + K1dξ̄

)
= i

∫
γ

f ⊗ ∂f † − ∂f ⊗ f †

f † · f
dξ +

∂̄f ⊗ f † − f ⊗ ∂̄f †

f † · f
dξ̄ . (37)

On the other hand, from (12), we are able to deduce that the matrix K can be decomposed as

K = M + L, (38)

where

M = (IN − P)∂̄P, L = −∂̄P (IN − P). (39)

It can be shown that the matrices M and L satisfy the same conservation laws (12) as the matrix
K, e.g.,

∂M = ∂̄M†, ∂L = ∂̄L†. (40)

6
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Note that the two conservation laws in (40) are not independent since M and L differ by a total
divergence,

M = L + ∂̄P . (41)

Taking into account the overdetermined system composed of the conservation laws (12) and
DCs (31) for the function f , the matrices M and L become

M1 = −f ⊗ ∂̄f † − (f † · ∂̄f )P̃

f † · f
, M

†
1 = −∂f ⊗ f † − (∂f † · f )P̃

f † · f
,

L1 = ∂̄f ⊗ f † − (f † · ∂̄f )P̃

f † · f
, L

†
1 = f ⊗ ∂f † − (∂f † · f )P̃

f † · f
.

(42)

As a consequence of the conservation laws (40) for the matrices M1 and L1, the Weierstrass
formula for immersion (22) takes the following simple form:

X(ξ, ξ̄ ) = i
∫

γ

(
M

†
1dξ + M1dξ̄

)
= −i

∫
γ

∂f ⊗ f † − (∂f † · f )P̃

f † · f
dξ +

f ⊗ ∂̄f † − (f † · ∂̄f )P̃

f † · f
dξ̄ , (43)

or

X(ξ, ξ̄ ) = i
∫

γ

(
L

†
1dξ + L1dξ̄

)
= i

∫
γ

f ⊗ ∂f † − (∂f † · f )P̃

f † · f
dξ +

∂̄f ⊗ f † − (f † · ∂̄f )P̃

f † · f
dξ̄ , (44)

respectively. As a consequence of (41), (43) and (44), it can be shown that the two different
Weierstrass data

(
L1, L

†
1

)
or

(
M1,M

†
1

)
correspond to different parametrizations of the same

surface F in the su(N) algebra.
In this case, the quantity J takes the simple form

J1 = ∂f † · ∂f

f † · f
−

(
f † · ∂f

f † · f

)2

, J̄1 = ∂̄f † · ∂̄f

f † · f
−

(
∂̄f † · f

f † · f

)2

. (45)

Using the conservation laws (12) and DCs (31) for the function f , we find that J1 is a
holomorphic function, e.g., ∂̄J1 = 0 whenever (12) and (31) hold. As a consequence of (43),
(44) and (45), the components of the induced metric are

gξξ = −J1, gξ̄ ξ̄ = −J̄1, gξ ξ̄ = ∂̄f † · ∂f

f † · f
− (∂̄f † · f )(f † · ∂f )

(f † · f )2
, (46)

which completes the proof. �

Remark. If the CP 1 model is subjected to the two DCs in (31), then the determinant of
the induced metric g vanishes, hence, we obtain a curve instead of a surface. However, the
determinant of the induced metric g of the CP N−1 model does not vanish for N � 3.

Note that the complex-valued vector function C 	 ξ → f (ξ) ∈ C
N\{0} is a holomorphic

(∂̄f = 0) solution of the CP N−1 model (12) if and only if the generalized Weierstrass formula
for the immersion of a surface F has the skew-Hermitian form

X(ξ, ξ̄ ) = −iP ∈ su(N). (47)

If f is holomorphic, i.e., ∂̄f = 0, then by virtue of equations (39) and the differential
consequences of the identity (IN − P)P = 0, we obtain

M = 0, ∂̄PP = 0. (48)

7
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Using the differential consequences for the projector P, we get

∂̄PP = 0, P ∂P = 0,

∂̄P = P ∂̄P, ∂P = ∂PP.
(49)

Substituting (49) into (13), we obtain

K = −∂̄P , K† = −∂P. (50)

Hence, the Weierstrass formula for immersion (22) of F is expressed in terms of the projector
P and is a skew-Hermitian matrix given by (47). This result coincides with that obtained in
[29].

The converse is also true. Indeed, if we assume that the Weierstrass formula for the
immersion (22) of F is a projector P then the differential of X leads to (50). Using the
differential consequences of the relation P 2 = P , we obtain the relations (49) which lead
to M = 0. In view of equations (39), this implies that, in the generic case, solutions of the
CP N−1 model (12) must be holomorphic.

Also, note that in the case of the holomorphic solutions of the CP N−1 model the
corresponding complex-valued function (15) vanishes, i.e.,

J = 1

f † · f
∂f †P∂f = 0. (51)

An analogous statement can be made for anti-holomorphic solutions (∂f = 0) of
equation (12). For this case, we have

L = 0, P ∂̄P = 0, ∂PP = 0. (52)

Hence, from (13), the matrices K and K† become

K = ∂̄P , K† = ∂P. (53)

Finally, one can see that the Weierstrass formula for the immersion of F is the skew-Hermitian
form

X(ξ, ξ̄ ) = iP ∈ su(N). (54)

4. The Lie-point symmetries of the CP N−1 sigma models

In this section, we present the explicit formulae for the Lie-point symmetries of the CP N−1

model (12) for arbitrary N. To do so, we first compute the symmetries for the CP 1, CP 2

and CP 3 models. We then generalize the results to the CP N−1 case by induction. For
the computation of the Lie-point symmetries, we search for the most general (point)
transformations of the independent and dependent variables which leave the solution set
of (12) invariant. Locally, such transformations are given by a vector field of the form [30]

�v = η1∂ + η2∂̄ +
N−1∑
j=1

�1
j ∂wj

+
N−1∑
j=1

�2
j ∂w̄j

, (55)

where η1, η2,�1
j and �2

j are functions of ξ, ξ̄ and the affine coordinates w1, w̄1, . . . ,

wN−1, w̄N−1. According to the symmetry criterion [30], the second prolongation of �v acting
on (12) must vanish on the solution set of (12). This requirement leads to the so-called
determining equations, whose solution yields the functions η1, η2,�1

j and �2
j .

Generating the determining equations is entirely algorithmic. Reducing and solving them
can be done by fully automatic with sophisticated software or, perhaps more reliably, by

8
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interactively adding information extracted from the simplest determining equations before
computing the full set. Many software packages have been written to perform Lie symmetry
computations. In-depth reviews of such packages can be found in [31–34].

For low dimensions, e.g., for N � 4, we did the computations independently with
SYMMGRP.MAX and by hand. For the latter, we took advantage of the discrete symmetries of
the model. For the CP N−1 models with N � 4, after eliminating all single-term determining
equations and their differential consequences, we were left with several hundred of determining
equations. Using SYMMGRP.MAX interactively, these determining equations were further
reduced and eventually completely solved.

We now discuss the Lie-point symmetries of the CP N−1 models for N = 2, 3 and 4,
separately.

The equations for the CP 1 model, expressed in terms of the homogeneous coordinate w1

defined in (17), are given by

∂∂̄w1 − 2w̄1

A1
∂w1∂̄w1 = 0, ∂∂̄w̄1 − 2w1

A1
∂w̄1∂̄w̄1 = 0, (56)

where A1 = 1 + w1w̄1. The general solution of the determining equations associated with
vector field (55) is given by

η1 = η1(ξ), η2 = η2(ξ̄ ),

�1
1 = α1w1

2 + β1w1 + γ1,

�2
1 = γ1w̄

2
1 − β1w̄1 + α1,

(57)

where η1 and η2 are arbitrary functions of ξ and ξ̄ , respectively, and α1, β1 and γ1 are arbitrary
constants. Thus, the corresponding symmetry algebra L1 is spanned by five generators,
namely,

X1 = η1(ξ)∂, X2 = η2(ξ̄ )∂̄,

X3 = w1
2∂w1 + ∂w̄1 ,

X4 = w1∂w1 − w̄1∂w̄1 ,

X5 = ∂w1 + w̄2
1∂w̄1 .

(58)

The algebra L1 can be decomposed as a direct sum of two infinite-dimensional simple Lie
algebras and the su(2) algebra generated by {X3, X4, X5}, i.e.,

L1 = {X1} ⊕ {X2} ⊕ su(2). (59)

Likewise, in terms of homogeneous coordinates w1 and w2 in (17), the equations for the
CP 2 model read

∂∂̄w1 − 2w̄1

A2
∂w1∂̄w1 − w̄2

A2
(∂w1∂̄w2 + ∂̄w1∂w2) = 0,

∂∂̄w2 − 2w̄2

A2
∂w2∂̄w2 − w̄1

A2
(∂w1∂̄w2 + ∂̄w1∂w2) = 0,

∂∂̄w̄1 − 2w1

A2
∂w̄1∂̄w̄1 − w2

A2
(∂̄w̄1∂w̄2 + ∂w̄1∂̄w̄2) = 0,

∂∂̄w̄2 − 2w2

A2
∂w̄2∂̄w̄2 − w1

A2
(∂̄w̄1∂w̄2 + ∂w̄1∂̄w̄2) = 0,

(60)

9
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where A2 = 1 + w1w̄1 + w2w̄2. Upon integration, the determining equations yield

η1 = η1(ξ), η2 = η2(ξ̄ ),

�1
1 = k1w1

2 + k2w1w2 + k4w1 + k5w2 + k6,

�1
2 = k2w2

2 + k1w1w2 + k3w2 + k7w1 + k8,

�2
1 = k6w̄

2
1 + k8w̄1w̄2 − k4w̄1 − k7w̄2 + k1,

�2
2 = k8w̄

2
2 + k6w̄1w̄2 − k3w̄2 − k5w̄1 + k2,

(61)

where ki (i = 1, . . . , 8) are arbitrary constants. The associated symmetry algebra L2 of (60)
is thus spanned by the following ten generators:

X1 = η1(ξ)∂, X2 = η2(ξ̄ )∂̄,

X3 = w1
2∂w1 + w1w2∂w2 + ∂w̄1 ,

X4 = w1w2∂w1 + w2
2∂w2 + ∂w̄2 ,

X5 = w2∂w2 − w̄2∂w̄2 ,

X6 = w1∂w1 − w̄1∂w̄1 ,

X7 = w2∂w1 − w̄1∂w̄2 ,

X8 = ∂w1 + w̄2
1∂w̄1 + w̄1w̄2∂w̄2,

X9 = w1∂w2 − w̄2∂w̄1 ,

X10 = ∂w2 + w̄1w̄2∂w̄1 + w̄2
2∂w̄2 .

(62)

As in the previous case, the symmetry algebra L2 can be decomposed as a direct sum of two
infinite-dimensional simple Lie algebras and the su(3) algebra.

In like fashion, in terms of w1, w2 and w3 in (17), the equations for the CP 3 model are

∂∂̄w1 − 2w̄1

A3
∂w1∂̄w1 − w̄2

A3
(∂w1∂̄w2 + ∂̄w1∂w2) − w̄3

A3
(∂w1∂̄w3 + ∂̄w1∂w3) = 0,

∂∂̄w2 − 2w̄2

A3
∂w2∂̄w2 − w̄1

A3
(∂w1∂̄w2 + ∂̄w1∂w2) − w̄3

A3
(∂w2∂̄w3 + ∂̄w2∂w3) = 0,

∂∂̄w3 − 2w̄3

A3
∂w3∂̄w3 − w̄1

A3
(∂w1∂̄w3 + ∂̄w1∂w3) − w̄2

A3
(∂w2∂̄w3 + ∂̄w2∂w3) = 0,

∂∂̄w̄1 − 2w1

A3
∂w̄1∂̄w̄1 − w2

A3
(∂w̄1∂̄w̄2 + ∂̄w̄1∂w̄2) − w3

A3
(∂w̄1∂̄w̄3 + ∂̄w̄1∂w̄3) = 0,

∂∂̄w̄2 − 2w2

A3
∂w̄2∂̄w̄2 − w1

A3
(∂w̄1∂̄w̄2 + ∂̄w̄1∂w̄2) − w3

A3
(∂w̄2∂̄w̄3 + ∂̄w̄2∂w̄3) = 0,

∂∂̄w̄3 − 2w3

A3
∂w̄3∂̄w̄3 − w1

A3
(∂w̄1∂̄w̄3 + ∂̄w̄1∂w̄3) − w2

A3
(∂w̄2∂̄w̄3 + ∂̄w̄2∂w̄3) = 0,

(63)

where A3 = 1 + w1w̄1 + w2w̄2 + w3w̄3. After straightforward but long calculations the
determining equations yield

η1 = η1(ξ), η2 = η2(ξ̄ ),

�1
1 = c1w1

2 + c2w1w2 + c3w1w3 + c7w1 + c10w2 + c11w3 + c4,

�1
2 = c2w2

2 + c1w1w2 + c3w2w3 + c13w1 + c8w2 + c12w3 + c5,

�1
3 = c3w3

2 + c1w1w3 + c2w2w3 + c14w1 + c15w2 + c9w3 + c6,

�2
1 = c4w̄

2
1 + c5w̄1w̄2 + c6w̄1w̄3 − c7w̄1 − c13w̄2 − c14w̄3 + c1,

10
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�2
2 = c5w̄

2
2 + c4w̄1w̄2 + c6w̄2w̄3 − c10w̄1 − c8w̄2 − c15w̄3 + c2,

�2
3 = c6w̄

2
3 + c4w̄1w̄3 + c5w̄2w̄3 − c11w̄1 − c12w̄2 − c9w̄3 + c3,

(64)

where ci (i = 1, . . . , 15) are arbitrary constants. Hence, the generators corresponding to the
symmetry algebra L3 of (63) are given by

X1 = η1(ξ)∂, X2 = η2(ξ̄ )∂̄,

Si = wi∂wi
− w̄i∂w̄i

,

Tij = wi∂wj
− w̄j ∂w̄i

, i �= j,

Yi = w2
i ∂wi

+
3∑

j �=i

wiwj∂wj
+ ∂w̄i

,

Zi = w̄2
i ∂w̄i

+
3∑

j �=i

w̄iw̄j ∂w̄j
+ ∂wi

,

(65)

where i, j = 1, 2, 3. From Si, Yi and Zi we get nine generators; from Tij we obtain six
generators. The symmetry algebraL3 can be written as a direct sum of two infinite-dimensional
simple Lie algebras and su(4). The results for the low-dimensional cases reveal an emerging
pattern: the symmetry algebra is a direct sum of two infinite-dimensional Lie algebras and
a finite-dimensional one. Furthermore, the finite-dimensional part of the symmetry algebras
for the CP 1, CP 2 and CP 3 models is associated with the su(2), su(3) and su(4) algebras,
respectively.

We now turn to the CP N−1 model for arbitrary N. In homogeneous coordinates wi, the
equations are

∂∂̄wi − 2w̄i

AN−1
∂wi∂̄wi − 1

AN−1

N−1∑
j �=i

w̄j (∂wi∂̄wj + ∂̄wi∂wj ) = 0,

∂∂̄w̄i − 2wi

AN−1
∂w̄i ∂̄w̄i − 1

AN−1

N−1∑
j �=i

wj (∂w̄i ∂̄w̄j + ∂̄w̄i∂w̄j ) = 0,

(66)

where i = 1, 2, . . . , N − 1 and AN−1 = 1 +
∑N−1

i wiw̄i .
By induction, it can be shown that the symmetry algebra LN−1 of (66) is generated by

X1 = η1(ξ)∂, X2 = η2(ξ̄ )∂̄,

Si = wi∂wi
− w̄i∂w̄i

,

Tij = wi∂wj
− w̄j ∂w̄i

, i �= j,

Yi = w2
i ∂wi

+
N−1∑
j �=i

wiwj∂wj
+ ∂w̄i

,

Zi = w̄2
i ∂w̄i

+
N−1∑
j �=i

w̄iw̄j ∂w̄j
+ ∂wi

,

(67)

where i, j = 1, 2, . . . , N − 1. Furthermore, it can be shown that the symmetry algebra LN−1

is a direct sum of two infinite-dimensional Lie algebras and the su(N) algebra, i.e.,

LN−1 = {X1} ⊕ {X2} ⊕ su(N). (68)

Finally, we consider two limiting cases:

11
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(1) If wN−1 → 0 then the CP N−1 model reduces to the CP N−2 model. Also, if all N − 2
homogeneous coordinates vanish, then the CP N−1 model reduces to the CP 1 model.

(2) If wi → w√
N−1

for i = 1, . . . , N − 1, then the CP N−1 model reduces to the CP 1 model.

Hence, in the CP 1 case, we have a significant simplification.

5. Immersion of surfaces into the su(3) algebra arising from the CP 2 sigma model

In this section, we explore the metric aspects of surfaces immersed in the su(3) algebra
associated with the holomorphic (anti-holomorphic) solutions of the CP 2 model. From
the properties of the Hermitian matrix ∂K we determine explicitly a moving frame on
a conformally parametrized surface F in R

8. We also derive the corresponding Gauss–
Weingarten equations expressed in terms of any holomorphic solution of the CP 2 model.
This investigation is a follow-up to earlier work [6, 7]. It allows us to communicate our new
insights into the subject, as well as to present additional geometric characteristics of surfaces
obtained from the model.

The assumption that the set {w1, w2} is a holomorphic solution of the equations for the
CP 2 model implies that the quantity J in (15) vanishes. The induced metric on F given in
(26) is then conformal. In the CP 2 case, the 3 × 3 projector matrix in (10) reads

P = I3 − 1

A2

⎛⎝ 1 w1 w2

w̄1 w1w̄1 w2w̄1

w̄2 w1w̄2 w2w̄2

⎞⎠ , (69)

where I3 is the 3 × 3 identity matrix. Assume that we are dealing with the generic case.
That is, where the projector P is a solution of the Euler–Lagrange equations (60) such that the
induced metric g has a non-vanishing determinant in some neighborhood of a regular point
(ξ0, ξ̄0) ∈ � ⊂ C. Further assume that a conformally parametrized surface F , given by (22)
and associated with the CP 2 model, is described by a moving frame on F in R

8:

�τ = (η1 = ∂X, η2 = ∂̄X, η3, . . . , η8)
T , (70)

where superscript T stands for transpose. Here, the vectors η1, . . . , η8 are identified with 3×3
skew-Hermitian matrices through the isomorphism (18). Furthermore, assume that the vectors
form an orthonormal set,

(ηj , ηk) = δjk, j, k = 1, . . . , 8, (71)

where δjk is the Kronecker delta. Due to the normalization of the su(3)-valued function X on
�, we can express the moving frame in (70) on F in terms of the adjoint SU(3) representation.
In the neighborhood of a regular point p = (ξ0, ξ̄0) ∈ C an orthonormal moving frame �τ on
F satisfies

η1 = ie
u
2 φ†y−φ, η2 = ie

u
2 φ†y+φ,

ηj = φ†sjφ, j = 3, . . . , 8,
(72)

where u is a real-valued function of ξ and ξ̄ . The function φ in (72) belongs to SU(3) and can
be decomposed into the product of three SU(2) factors, i.e.,

φ =
⎛⎝1 0 0

0 a1 b1

0 −b̄1 ā1

⎞⎠ ⎛⎝eiϕ cos α − sin α 0
sin α e−iϕ cos α 0

0 0 1

⎞⎠ ⎛⎝1 0 0
0 a2 b2

0 −b̄2 ā2

⎞⎠ , (73)

where ai, bi, i = 1, 2, are complex-valued functions of ξ and ξ̄ , subject to the constraints
|ai |2 + |bi |2 = 1 and α, ϕ are real-valued functions of ξ, ξ̄ ∈ C. Here, the set {s1, . . . , s8}
12
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forms an orthonormal basis of the Lie algebra su(3) (e.g., the so-called Gell–Mann matrices
[35]) given by

s1 =
⎛⎝0 0 0

0 0 −i
0 −i 0

⎞⎠ , s2 =
⎛⎝0 0 0

0 0 −1
0 1 0

⎞⎠ , s3 =
⎛⎝0 0 0

0 −i 0
0 0 i

⎞⎠ ,

s4 = 1√
3

⎛⎝−2i 0 0
0 i 0
0 0 i

⎞⎠ , s5 =
⎛⎝0 −1 0

1 0 0
0 0 0

⎞⎠ , s6 =
⎛⎝0 0 −1

0 0 0
1 0 0

⎞⎠ , (74)

s7 =
⎛⎝0 i 0

i 0 0
0 0 0

⎞⎠ , s8 =
⎛⎝0 0 i

0 0 0
i 0 0

⎞⎠ .

These matrices satisfy the following trace condition:

tr(sisj ) = −2δij . (75)

We also introduced the following notation:

y− = i

2
(s1 − is2) =

⎛⎝0 0 0
0 0 0
0 1 0

⎞⎠ , y+ = i

2
(s1 + is2) =

⎛⎝0 0 0
0 0 1
0 0 0

⎞⎠ . (76)

As a direct consequence of the moving frame (72) we get

(φ†y−φ)† = φ†y+φ. (77)

Note that, over the space R, the set {y−, y+} spans the same space as {s1, s2}.
Requiring that the parametrization of a surface F be conformal leads to the following

conditions:

gξξ = (∂X, ∂X) = − 1
2 eutr(y−)2 = 0,

gξ̄ ξ̄ = (∂̄X, ∂̄X) = − 1
2 eutr(y+)

2 = 0,

gξ ξ̄ = (∂X, ∂̄X) = 1
2 eutr(y−y+) = 1

2 eu,

(78)

and

(∂X, ηj ) = − 1
2 e

u
2 tr(y−sj ) = 0,

(∂̄X, ηj ) = − 1
2 e

u
2 tr(y+sj ) = 0,

(ηj , ηk) = − 1
2 tr(sj sk) = δjk,

(79)

where j, k = 3, . . . , 8. Thus, we have the following proposition.

Proposition 2. In the adjoint SU(3) representation, the moving frame (72) of a conformally
parametrized surface F is described in terms of holomorphic solutions {w1, w2} of the CP 2

equations (60) by the formulae

η1 = − i

A2
2

⎛⎝ δ β γ

w̄1δ w̄1β w̄1γ

w̄2δ w̄2β w̄2γ

⎞⎠ , η2 = − i

A2
2

⎛⎝ δ̄ w1δ̄ w2δ̄

β̄ w1β̄ w2β̄

γ̄ w1γ̄ w2γ̄

⎞⎠ , (80)

and

u = ln

(
ρ

A2
2

)
, (81)

13
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where we define

δ = w̄1∂w1 + w̄2∂w2,

β = w1w̄2∂w2 − (1 + |w2|2)∂w1,

γ = w̄1w2∂w1 − (1 + |w1|2)∂w2,

ρ = |∂w1|2 + |∂w2|2 + |w2∂w1 − w1∂w2|2.

(82)

Proof. Using the polar decomposition of the SU(3) group given by (73), and calculating the
products in the frame (72), yields

η1 = ie
u
2

⎛⎝−a1b1 sin2 α −b1 sin αζ −b1 sin αµ

χa1 sin α χζ χµ

νa1 sin α νζ νµ

⎞⎠ ,

(83)

η2 = ie
u
2

⎛⎝−ā1b̄1 sin2 α χ̄ā1 sin α ν̄ā1 sin α

−b̄1 sin αζ̄ χ̄ ζ̄ ν̄ζ̄

−b̄1 sin αµ̄ χ̄µ̄ ν̄µ̄

⎞⎠ ,

where

χ = −a1b2 − ā2b1 eiϕ cos α, ζ = −b1b̄2 + a1a2 e−iϕ cos α,

µ = ā2b1 + a1b2 e−iϕ cos α, ν = a1a2 − b1b̄2 eiϕ cos α.
(84)

Comparing (80) with (83) we obtain an underdetermined system of eight equations for nine
unknown functions ai, bi ∈ C, i = 1, 2, and α, ϕ, u ∈ R. This system has a unique solution
up to a U(1) transformation. In other words, the phase eiϕ remains arbitrary.

A straightforward algebraic computation gives ai, bi and α in terms of the fields w1 and
w2 for the CP 2 model. Explicitly,

a1 =
√

δκ

A2 sin α
e−u/4, b1 =

√
δ/κ

A2 sin α
e−u/4,

a2 = −eiϕ∂̄w̄2(w2∂w1 − w1∂w2)

ρ sin α cos α
, b2 = eiϕ∂̄w̄1(w2∂w1 − w1∂w2)

ρ sin α cos α
,

sin2 α = |∂w1|2 + |∂w2|2
ρ

, cos2 α = |w2∂w1 − w1∂w2|2
ρ

,

(85)

with u as in (81) and

κ = δ cos α

w2∂w1 − w1∂w2
e−iϕ. (86)

With the above, we can determine the moving frame (72) on F , expressed in terms of w1 and
w2, in the required form (80). That ends the proof since by direct computation one can check
that the compatibility conditions, i.e., ∂∂̄X = ∂̄∂X, for (72) are trivially satisfied. �

Remark. The explicit expressions for the complex normals η3, . . . , η8 to this surface immersed
in su(3) have been calculated. However, the resulting expressions (in terms of w1 and w2) are
rather involved. A specific example is given in appendix.

The real-valued function u given by (85) represents the total energy [27] of the CP 2 model
defined over S2, since

u = 2 ln(|Dz|2 + |D̄z|2) (87)

holds.
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Using the components of the induced metric (26), we can write the nonzero Christoffel
symbols of the second kind as

�1
11 = 1

q
∂q, �2

22 = 1

q
∂̄q. (88)

In this case, q defined in (25) becomes

q = |∂w1|2 + |∂w2|2 + |w1∂w2 − w2∂w1|2
2(1 + |w1|2 + |w2|2)2

. (89)

Finally, taking into account (71), (78) and (79), the moving frame (70) on F satisfies the
following Gauss–Weingarten equations:

∂2X = ∂q

q
∂X + Jjηj ,

∂∂̄X = Hjηj ,

∂ηj = −2
A2

2

ρ
(Hj∂X + Jj ∂̄X) + Sjkηk,

(90)

and

∂̄2X = ∂̄q

q
∂̄X + J̄ j ηj ,

∂̄∂X = Hjηj ,

∂̄ηj = −2
A2

2

ρ
(J̄ j ∂X + Hj ∂̄X) + S̄jkηk,

(91)

where

Jj = − 1
2 tr(∂2Xηj ), Hj = − 1

2 tr(∂∂̄Xηj ), (92)

and

Sjk + Skj = 0, S̄jk + S̄kj = 0, j �= k = 3, . . . , 8. (93)

The Gauss–Codazzi–Ricci equations, which are the compatibility conditions for (90) and
(91), coincide with the equations of the CP N−1 model. However, the explicit forms of the
coefficients Hj and Jj depend locally on the chosen orthonormal basis {η3, . . . , η8} of the
space normal to the surface F at a given point p = (ξ0, ξ̄0) ∈ X. Note that quantities Hj and
Jj are not completely arbitrary. Using (78) and the fact that J = 0, it becomes clear that the
complex tangent vectors have to satisfy the following differential constraints:

(∂2X, ∂̄∂X) = 0, (∂̄2X, ∂∂̄X) = 0. (94)

For any holomorphic solution (wi, w̄i), i = 1, 2, of the CP 2 model, we computed
explicitly the form of the first and second fundamental forms, I and II, and the mean curvature
vector H of a conformally parametrized surface F at some regular point p = (ξ0, ξ̄0) ∈ X.

They are

I = ρ

A2
2 dξ dξ̄ ,

II =
(

∂2X − ∂q

q
∂X

)
dξ 2 + 2∂∂̄Xdξ dξ̄ +

(
∂̄2X − ∂̄q

q
∂̄X

)
dξ̄ 2,

H = 2

q
∂∂̄X,

(95)
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respectively. The second derivatives of the Weierstrass representation X can be computed
from (83).

One can also compute some of the global properties of surfaces associated with the CP 2

sigma model, using the well-known formulae (see, e.g., [36, 37]). For instance, for any set of
holomorphic solutions (wi, w̄i), i = 1, 2, of the CP 2 model, the Willmore functional assumes
the form

W = −4i
∫

�

1

q
[∂P, ∂̄P ]2 dξ dξ̄ , (96)

whose values depend only on the fields and their derivatives on the boundary ∂� of the open
set �.

Under the above assumptions and provided that the CP 2 model is defined on the whole
Riemannian sphere S2, the topological charge becomes

Q = − 1

8π

∫
S2

q dξ dξ̄ . (97)

If the above integral exists, then it is an integer which globally characterizes the surface.

6. The Weierstrass formula for the immersion of surfaces in the su(2) and su(3)
algebras

In this section we apply the general idea of the Weierstrass representation of surfaces given
in section 3 to two specific cases, namely, the CP 1 and CP 2 models. For each case, we first
find the concrete form of the generalized Weierstrass representation of surfaces associated
with these models and then we give the corresponding Weierstrass data for the holomorphic
solutions.

It is known [6, 7] that, with the projector P given by (10), one can compute explicitly the
formula for immersion (22) in terms of the complex fields wi of the equations of motion of
the model.

We start with the case N = 2. The orthogonal projector P and matrix K are then given by

P = I2 − 1

A1

(
1 w1

w̄1 w1w̄1

)
, (98)

and

K = 1

A1
2

(
w̄1∂̄w1 − w1∂̄w̄1 −(

∂̄w1 + w2
1 ∂̄w̄1

)
(∂̄w̄1 + w̄2

1 ∂̄w1) w1∂̄w̄1 − w̄1∂̄w1

)
, (99)

where, as usual, w1 is the homogeneous coordinate defined by (17). Based on the expression
of the matrix K for the CP 1 model, the Weierstrass data follow from (20). In order to obtain
real-valued 1-forms we decompose dX given in (20) into its real and imaginary parts,

dX = dX1 + idX2. (100)

So,

dX1 = i

2
[(K† − K̄) dξ + (K − KT ) dξ̄ ],

dX2 = 1

2
[(K† + K̄) dξ + (K + KT ) dξ̄ ].

(101)

It is easily seen that dX1 is skew-symmetric and dX2 is symmetric. Realizing that the 2D
surface associated with the CP 1 model is immersed in the su(2) algebra, the two real-valued
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1-forms can also be expressed in terms of the Pauli matrices. Since dX1 is skew-symmetric
and dX2 is symmetric, the 1-forms can be represented as

dX1 = idX2σ2, dX2 = dX1σ1 + dX3σ3, (102)

where σ1, σ2 and σ3 are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (103)

After substituting the matrix K from (99) into (101) and comparing the result with (102), it
is easy to see that the real-valued 1-forms dXi, i = 1, 2, 3, can be expressed in terms of the
solutions of the Euler–Lagrange equations of the CP 1 model. Indeed,

dX1 = 1

2A1
2

([(
1 − w̄2

1

)
∂w1 − (

1 − w2
1

)
∂w̄1

]
dξ + c.c.

)
,

dX2 = i

2A1
2

([(
1 + w2

1

)
∂w̄1 +

(
1 + w̄2

1

)
∂w1

]
dξ − c.c.

)
,

dX3 = 1

A1
2 ([w1∂w̄1 − w̄1∂w1] dξ + c.c.),

(104)

where ‘c.c.’ denotes the complex conjugate. In fact, these real-valued 1-forms constitute the
generalized Weierstrass formula for immersion for the CP 1 model.

Now, we further restrict ourselves to the holomorphic solutions of the CP 1 model.
This restriction is necessary if the model is defined on S2 with a finite action [27]. Using
holomorphic solutions, dXi, i = 1, 2, 3, can be reduced into

dX1 = 1

2
∂

(
w1 + w̄1

A1

)
dξ + c.c.,

dX2 = i

2

[
∂

(
w1 − w̄1

A1

)
dξ − c.c.

]
,

dX3 = −∂

( |w1|2
A1

)
dξ + c.c.

(105)

Integration gives

X1 = w1 + w̄1

2A1
, X2 = i

w1 − w̄1

2A1
, X3 = −|w1|2

A1
, (106)

where the constants of integration are set to zero.
It is well known that the 2D surface associated with the holomorphic solutions of the CP 1

model is the surface of a sphere [27]. Confirmation of that result follows from (106). Indeed,
upon elimination of w1 and w̄1, we obtain

X2
1 + X2

2 +

(
X3 +

1

2

)2

= 1

4
. (107)

So, all points of the 2D surface lie on the surface of a sphere of radius 1/2 centered at
(0, 0,−1/2).

We now consider the case N = 3. The corresponding orthogonal projector P is given in
(69) and matrix K = −iη2 with η2 in (80). Since the 2D surface associated with the CP 2

model is immersed in the su(3) algebra, the two real-valued 1-forms, dX1 and dX2, obtained
by decomposing dX = i(K† dξ + K dξ̄ ) into real and imaginary parts, can be expressed
in terms of the orthonormal basis of the Lie algebra su(3). Keeping in mind that dX1 is
skew-symmetric and dX2 is symmetric, the real-valued 1-forms are given by
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dX1 = dX2s2 + dX5s5 + dX6s6,

dX2 = i(dX1s1 + dX3s3 + dX4s4 + dX7s7 + dX8s8),
(108)

where the Gell–Mann matrices si, i = 1, . . . , 8, are given in (74).
Using K = −iη2 and comparing (101) with (108), it follows that the real-valued 1-forms

dXi, i = 1, . . . , 8, can be expressed in terms of the solutions of the Euler–Lagrange equations
of the CP 2 model as

dX1 = 1

2A2
2

([(
w2

2 − w2
1

)
(w̄1∂w̄2 − w̄2∂w̄1) − (

w̄2
2 − w̄2

1

)
(w1∂w2 − w2∂w1)

− w2∂w̄1 + w̄2∂w1 − w1∂w̄2 + w̄1∂w2
]
dξ + c.c.

)
,

dX2 = i

2A2
2

([(
w2

1 + w2
2

)
(w̄2∂w̄1 − w̄1∂w̄2) +

(
w̄2

1 + w̄2
2

)
(w2∂w1 − w1∂w2)

+ w2∂w̄1 + w̄2∂w1 − w1∂w̄2 − w̄1∂w2
]
dξ − c.c.

)
,

dX3 = 1

2A2
2

([
w2∂w̄2 − w1∂w̄1 − w̄2∂w2 + w̄1∂w1

+ 2|w1|2(w2∂w̄2 − w̄2∂w2) − 2|w2|2(w1∂w̄1 − w̄1∂w1)
]
dξ + c.c.

)
,

dX4 =
√

3

2A2
2

([
w1∂w̄1 + w2∂w̄2 − w̄1∂w1 − w̄2∂w2

]
dξ + c.c.

)
,

dX5 = − i

2A2
2

([(
1 + w̄2

1 + |w2|2
)
∂w1 +

(
1 + w2

1 + |w2|2
)
∂w̄1

+ (w2∂w̄2 − w̄2∂w2)(w1 − w̄1)
]
dξ − c.c.

)
,

dX6 = − i

2A2
2

([(
1 + w̄2

2 + |w1|2
)
∂w2 +

(
1 + w2

2 + |w1|2
)
∂w̄2

+ (w1∂w̄1 − w̄1∂w1)(w2 − w̄2)
]
dξ − c.c.

)
,

dX7 = 1

2A2
2

([(
1 − w2

1 + |w2|2
)
∂w̄1 − (

1 − w̄2
1 + |w2|2

)
∂w1

+ (w̄2∂w2 − w2∂w̄2)(w1 + w̄1)
]
dξ + c.c.

)
,

dX8 = 1

2A2
2

([(
1 − w2

2 + |w1|2
)
∂w̄2 − (

1 − w̄2
2 + |w1|2

)
∂w2

+ (w̄1∂w1 − w1∂w̄1)(w2 + w̄2)
]
dξ + c.c.

)
. (109)

These eight real-valued 1-forms constitute the generalized Weierstrass formula for immersion
for the CP 2 model.
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Remark. Note that the reflection transformations in independent or dependent variables and
their complex conjugates preserve the form of the CP 2 model. So does the generalized
SU(2) transformation. Indeed, if the complex-valued functions u1 and u2 are solutions of the
CP 2 model, then the complex-valued functions w1 and w2 defined by the generalized SU(2)

transformation,

w1 → a2u1 − b2u2 − √
2ab√

2(ab̄u1 + ābu2) + |a|2 − |b|2 ,

w2 → −b̄2u1 + ā2u2 − √
2āb̄√

2(ab̄u1 + ābu2) + |a|2 − |b|2 ,

(110)

for a, b ∈ C such that |a|2 + |b|2 = 1, are also solutions of the CP 2 model.

These transformations can be used to restrict the range of parameters appearing in the
explicit form of solutions of the CP 2 model. They allow one to simplify the Weierstrass
representation.

Again, we restrict ourselves to the holomorphic solutions of the CP 2 model. In that case,
the eight real-valued 1-forms dXi, i = 1, . . . , 8, are

dX1 = 1

2
∂

(
w1w̄2 + w̄1w2

A2

)
dξ + c.c.,

dX2 = i

2

[
∂

(
w1w̄2 − w̄1w2

A2

)
dξ − c.c.

]
,

dX3 = 1

2
∂

( |w1|2 − |w2|2
A2

)
dξ + c.c.,

dX4 = −
√

3

2
∂

( |w1|2 + |w2|2
A2

)
dξ + c.c.,

dX5 = − i

2

[
∂

(
w1 − w̄1

A2

)
dξ − c.c.

]
,

dX6 = − i

2

[
∂

(
w2 − w̄2

A2

)
dξ − c.c.

]
,

dX7 = −1

2
∂

(
w1 + w̄1

A2

)
dξ + c.c.,

dX8 = −1

2
∂

(
w2 + w̄2

A2

)
dξ + c.c.

(111)

Ignoring integration constants, after integration we obtain

X1 = w1w̄2 + w̄1w2

2A2
, X2 = i

w1w̄2 − w̄1w2

2A2
, X3 = |w1|2 − |w2|2

2A2
,

X4 = −
√

3
|w1|2 + |w2|2

2A2
, X5 = −i

w1 − w̄1

2A2
, X6 = −i

w2 − w̄2

2A2
,

X7 = −w1 + w̄1

2A2
, X8 = −w2 + w̄2

2A2
,

(112)

which determines the coordinates of the radius vector �X = (X1, . . . , X8) of a two-dimensional
surface in R

8.
Note that in the limiting cases wi → w/

√
2, i = 1, 2, or w1 → 0 or w2 → 0,

the generalized Weierstrass formula (109) for the immersion of the CP 2 model reduces
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(after straightforward manipulations) to the generalized Weierstrass formula (104) for the
immersion of the CP 1 model. Consequently, the coordinates of radius vector �X in (112) for
the holomorphic solutions of the CP 2 model then reduce to the coordinates of �X in (106) for
the holomorphic solutions of the CP 1 model.

When dealing with the 2D surface associated with the holomorphic solutions of the CP 2

model, all points lie on the affine sphere,

4X2
1 + 4X2

2 + 4X2
3 + 2√

3
X4 + X2

5 + X2
6 + X2

7 + X2
8 = 0. (113)

It is straightforward to show that the coordinates of the radius vector (112) satisfy (113).

7. Examples of surfaces associated with the CP N−1 sigma models

Using elementary examples, we will illustrate the concept of constructing surfaces associated
with the CP N−1 model.

7.1. Examples of holomorphic solutions of the CP 2 sigma model

From the form of the CP 2 model, it is readily seen that the holomorphic functions are solutions
of the CP 2 model. We now concentrate on the following class of holomorphic solutions of
the CP 2 model:

w1 = a1ξ
m, w2 = a2ξ

n, (114)

where a1 and a2 are complex constants and m and n are real constants. For holomorphic
solutions J = 0 and the induced metric is conformal. Using the solutions in (114), that metric
is given by

I = |a1|2|ξ |2m(m2 + |a2|2(m − n)2|ξ |2n) + |a2|2n2|ξ |2n

|ξ |2(1 + |a1|2|ξ |2m + |a2|2|ξ |2n)2
dξ dξ̄ . (115)

The Gaussian curvature K is computed from (28). After simplification,

K = 4 − 2|a1|2|a2|2m2n2(m − n)2|ξ |2(m+n)(1 + |a1|2|ξ |2m + |a2|2|ξ |2n)3(|a1|2|ξ |2m(m2 + |a2|2(m − n)2|ξ |2n) + |a2|2n2|ξ |2n
)3 . (116)

In general, K is not constant. However, K is constant for certain values of a1, a2,m and n.
For example, if the second term in (116) vanishes or equals to a constant, then the surfaces
associated with the holomorphic solutions (114) of the CP 2 model will have constant Gaussian
curvature. This happens when

(i) a1 = 0, a2 = 0,m = 0, n = 0 and m = n or a combination thereof. For these choices
the second term in (116) vanishes; or

(ii) n = 2m and |a1|2 = ±2|a2| simultaneously. The second term in (116) then reduces to a
constant.

Not surprisingly, constant Gaussian curvature occurs when a1 = 0 or a2 = 0 because the
CP 2 model then reduces to the CP 1 model. Hence, the surfaces must have constant Gaussian
curvature.

We now consider a case of constant Gaussian curvature surfaces associated with specific
holomorphic solutions (114) of the CP 2 model. For simplicity, we take

w1 = ξ, w2 = 1
2ξ 2. (117)

The first fundamental form and the Gaussian curvature then are

I = 4

(2 + |ξ |2)2
dξ dξ̄ , K = 2. (118)
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Upon substitution of (117) into (112), the coordinates of the radius vector �X become

X1 = |ξ |2(ξ + ξ̄ )

(2 + |ξ |2)2
, X2 = i

|ξ |2(ξ̄ − ξ)

(2 + |ξ |2)2
, X3 = |ξ |2(4 − |ξ |2)

2(2 + |ξ |2)2
,

X4 = −
√

3

2

(
1 − 4

(2 + |ξ |2)2

)
, X5 = −i

2(ξ − ξ̄ )

(2 + |ξ |2)2
,

X6 = −i
(ξ 2 − ξ̄ 2)

(2 + |ξ |2)2
, X7 = − 2(ξ + ξ̄ )

(2 + |ξ |2)2
, X8 = − (ξ 2 + ξ̄ 2)

(2 + |ξ |2)2
.

(119)

Of course, the above coordinates satisfy the relation (113). Hence, the surface associated with
the specific solutions (117) of the CP 2 model is an affine sphere.

7.2. Mixed solutions of the CP 2 sigma model

In this subsection we analyze the mixed solutions of the CP 2 model and give the first
fundamental form, Gaussian curvature and the Weierstrass data for a specific example. It
is well known [27] that if the CP 2 model is defined over S2 and the finiteness of the action
(8) is required, then the solutions of the CP 2 model split into three cases: holomorphic
solutions, anti-holomorphic solutions and mixed ones. Among these, the mixed solutions can
be constructed either from the holomorphic or anti-holomorphic solutions according to the
following procedure [6, 27].

Consider three arbitrary holomorphic functions gi = gi(ξ), i = 1, 2, 3, and define the
Wronskian

Gij = gi∂gj − gj∂gi, i = 1, 2, 3 (120)

based on any pair. It can be verified that the functions

fi =
3∑

k �=i

ḡkGki, i = 1, 2, 3 (121)

are solutions of the CP 2 model. The mixed solutions are associated with the ratios

w1 = f1

f3
, w2 = f2

f3
. (122)

Likewise, mixed solutions can be obtained from anti-holomorphic solutions by using ∂̄

instead of ∂ .
We now continue with the holomorphic functions

g1 = 1, g2 = sech(ξ), g3 = tanh(ξ). (123)

Using the above procedure, the mixed solutions of the CP 2 model are

w1 = tanh

(
ξ − ξ̄

2

)
, w2 = − tanh(ξ) + tanh(ξ̄ )

sech(ξ) + sech(ξ̄ )
, (124)

which are of soliton type. These fields satisfy the equations of the CP 2 model. J = 0 for this
case, as can be readily verified. Hence, the induced metric is conformal and given by

I = 2

1 + cosh(ξ + ξ̄ )
dξ dξ̄ . (125)

Note that holomorphicity of the solutions of the CP N−1 model implies that J = 0. The
converse is false as seen from the above example (124).
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The Gaussian curvature is computed from the formula given in (28) (since J = 0) and
found to be

K = 1. (126)

After substituting the solutions (124) into (109) for the CP 2 model, the Weierstrass
representation becomes

dX1 = − sinh(ξ̄ )

1 + cosh(ξ + ξ̄ )
dξ + c.c., dX6 = i

[
cosh(ξ̄ )

1 + cosh(ξ + ξ̄ )
dξ − c.c.

]
,

dX7 = − 1

1 + cosh(ξ + ξ̄ )
dξ + c.c.,

(127)

and

dX2 = 0, dX3 = 0, dX4 = 0, dX5 = 0, dX8 = 0. (128)

Integrating (127), we obtain the coordinates of the radius vector �X:

X1 = sech

(
ξ + ξ̄

2

)
cosh

(
ξ − ξ̄

2

)
,

X6 = isech

(
ξ + ξ̄

2

)
sinh

(
ξ − ξ̄

2

)
,

X7 = − tanh

(
ξ + ξ̄

2

)
,

(129)

They satisfy X2
1 + X2

6 + X2
7 = 1. Hence, the constant Gaussian curvature surface associated

with the soliton-like solutions (124) of the CP 2 model is really immersed in R
3 which, in turn,

corresponds to the immersion of the CP 2 model into the CP 1 model.

7.3. Examples of surfaces in a low-dimensional su(N) algebra

We briefly discuss the non-splitting solutions (wi, w̄i), i = 1, . . . , N −1, of the CP N−1 model
invariant under the scaling symmetries {Si} as given in (67). To do so, we subject system (66)
to N − 1 algebraic constraints

wiw̄i = Di ∈ R, i = 1, . . . , N − 1. (130)

If, for simplicity, we choose Di = 1, then the simplest solutions of this type are

wi = Fi(ξ)

F̄i(ξ̄ )
, i = 1, . . . , N − 1, (131)

where Fi and F̄i are arbitrary complex-valued functions of one complex variable each.
Substituting (131) into (66), for N � 3 we obtain a class of non-splitting solutions of the
CP N−1 model which depend on one arbitrary complex-valued function of one variable ξ and
its conjugate. Indeed,

w1 = F1(ξ)

F̄1(ξ̄ )
, w2 = c

c̄

F1(ξ)eiψ

F̄1(ξ̄ )e−iψ , j = 1, . . . , N − 2, (132)

where c, c̄ are complex constants and

ψ = ±π

3
+ 2πm, m ∈ Z. (133)
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For brevity, from now on we suppress the subscript 1 and also the arguments of the functions
F and F̄ . For this class of non-splitting solutions, the induced metric gij has the following
components:

gξξ = −N − 3

N2

(F ′)2

F 2
, gξ̄ ξ̄ = −N − 3

N2

(F̄ ′)2

F̄ 2
, gξ ξ̄ = 2N − 3

N2

|F ′|2
|F |2 , (134)

where prime denotes differentiation with respect to the argument. The determinant of the
induced metric then is

g = −3(N − 2)

N3

|F ′|4
|F |4 . (135)

For N = 2, the determinant of the induced metric vanishes. Hence, the associated surface
for the CP 1 model, subject to the DCs in (130), reduces to a curve in R

3. For N = 3, the
diagonal components of the induced metric vanish (since J = 0). Hence, we have a conformal
metric for the CP 2 model subject to the DCs in (130).

From (28) it is straightforward to show that the Gaussian curvature vanishes for the
associated surfaces of the CP N−1 model (N = 3), subject to the DCs (130). Thus, we
conclude that the surfaces associated with solutions of the CP 2 model, which are invariant
under dilations, always have zero Gaussian curvature, i.e.,

K = 0. (136)

Finally, let us give the coordinates of the radius vector �X for the non-splitting solutions
of the CP 2 model. After substituting the non-splitting solutions (132) of the CP 2 model into
the Weierstrass representation (109) and subsequent integration, the coordinates of the radius
vector �X in R

8 are

X1 = i

6
√

3|c|2 |F |−2eiψ
(c̄2F − c2F̄ |F |2i

√
3),

X2 = − 1

6
√

3|c|2 |F |−2eiψ
(c̄2F + c2F̄ |F |2i

√
3),

X3 = 1

6

(
(1 − i

√
3)lnF + (1 + i

√
3) ln F̄

)
,

X4 = −1

6

(
(i +

√
3)lnF + (−i +

√
3) ln F̄

)
,

X5 = − F 2 + F̄ 2

6
√

3|F |2 ,

X6 = 1

6
√

3|c|2 |F |−2eiψ
(c̄2F̄ + c2F |F |2i

√
3),

X7 = i(F 2 − F̄ 2)

6
√

3|F |2 ,

X8 = i

6
√

3|c|2 |F |−2eiψ
(c̄2F̄ − c2F |F |2i

√
3),

(137)

where ψ is given in (133) and c is a complex constant. The corresponding first fundamental
form is immediately obtained from (134) for N = 3 and given as

I = 2

3

|F ′|2
|F |2 dξ dξ̄ . (138)
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8. Summary and concluding remarks

The objective of this paper was to revise and expand on theoretical results in [6] concerning
surfaces related to the CP N−1 sigma model. For example, proposition 4 in [6] concerning
the structural equations for the CP 2 model (where only the holomorphic solutions were
assumed) has been restated as proposition 2. In doing so, we covered in greater detail the
geometrical aspects of surfaces immersed in the su(N) algebra. Furthermore, we have derived
the formulae in terms of explicit functions in the CP N−1 model, which makes the results in
[6] more transparent and useful.

We also computed the Lie-point symmetries of the CP N−1 model equations for arbitrary
N. The resulting symmetry algebra is decomposed as a direct sum of two infinite-dimensional
simple Lie algebras and the su(N) algebra. Using the Lie-point symmetries, the method of
symmetry reduction can now be applied to find solutions which are invariant under subgroups
of SU(N) with generic orbits of codimension one. In [38], this analysis was carried out for
N = 2. The obtained invariant solutions are complicated expressions in terms of elliptic
functions. As was shown in [38], for some cases the reduced ordinary differential equations
(ODEs) can be transformed into the standard form of the P3 Painlevé transcendent. Matters
get worse when N � 3. Although the reduction can still be carried out, the resulting ODEs
are coupled and do not appear to be separable. One can prove the existence of solutions but
‘how to find them’ remains an open problem.

For the CP 2 model, we characterized the immersion of surfaces in the su(3) algebra.
Explicit formulae were found for the moving frame, the structural equations (Gauss–
Weingarten and Gauss–Codazzi), the first and second fundamental forms, the Gaussian, the
mean curvatures, the Willmore functional and the topological charge. These quantities are
expressed in terms of holomorphic fields of the CP 2 model. The theoretical concepts have been
illustrated with various examples. We also have shown that non-degenerate affine surfaces in
R

8 associated with the CP 2 model are affine spheres. Finally, we discussed dilation-invariant
solutions of the CP N−1 model, holomorphic immersion of surfaces associated with CP 2

models and mixed soliton-type solutions of the CP 2 model and its corresponding surfaces.
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Appendix

In this appendix we give the explicit form of the vector normals,

ηj = φ†sjφ, j = 3, . . . , 8,

to the surface immersed in the su(3) algebra. The general expressions are too complicated to
be useful. Instead, we consider the case of a 2D surface associated with the CP 2 model with
solution (117).

We present the normals in the equivalent matrix form.
The first normal is

η3 = φ†s3φ = iη3
ij ,

24



J. Phys. A: Math. Theor. 41 (2008) 065204 A M Grundland et al

where

η3
11 = 4(|ξ |2 − 1)

�2
2 , η3

12 = 2ξ
(
4 + |ξ |2�1

)
�1�2

2 , η3
13 = 2ξ 2�5

�1�2
2 ,

η3
21 = 2ξ̄

(
4 + |ξ |2�1

)
�1�2

2 , η3
22 = 4 + |ξ |4(5 + |ξ |2�2

)
�1

2�2
2 ,

η3
23 = −4ξ(|ξ |2 − 1)

�1
2�2

2 , η3
31 = 2ξ̄ 2�5

�1�2
2 ,

η3
32 = −4ξ̄ (|ξ |2 − 1)

�1
2�2

2 , η3
33 = |ξ |2(4 − |ξ |2�3

2
)

�1
2�2

2 ,

(A.1)

with �j (j = 1, . . . , 5) defined as

�j = j + |ξ |2, j = 1, . . . , 5. (A.2)

The second normal is

η4 = φ†s4φ = iη4
ij ,

where

η4
11 = 2

(
2 + |ξ |2(2 − |ξ |2))√

3�2
2

, η4
12 = 2

√
3|ξ |2ξ
�2

2 ,

η4
13 = −2

√
3ξ 2

�2
2 , η4

21 = 2
√

3|ξ |2ξ̄
�2

2 ,

η4
22 = 4 + |ξ |2(|ξ |2 − 8)√

3�2
2

, η4
23 = 4

√
3ξ

�2
2 ,

η4
31 = −2

√
3ξ̄ 2

�2
2 , η4

32 = 4
√

3ξ̄

�2
2 ,

η4
33 = |ξ |2�4 − 8√

3�2
2

.

(A.3)

The next one is

η5 = φ†s5φ = ie− 3iϕ
2 η5

ij ,

where

η5
11 = 2|ξ |(e3iϕξ 2 − ξ̄ 2)

�2
2 , η5

12 = −
√

ξ
(
4e3iϕξ 2�1 + ξ̄ 2(2 + |ξ |2�1)

)√
ξ̄�1�2

2
,

η5
13 = 2ξ (3/2)(2e3iϕξ�1 − ξ̄ 3)

ξ̄ (3/2)�1�2
2 , η5

21 =
√

ξ̄
(
4ξ̄ 2�1 + e3iϕξ 2(2 + |ξ |2�1

)
√

ξ�1�2
2 ,

η5
22 = −2(e3iϕξ 2 − ξ̄ 2)(2 + |ξ |2�1)

|ξ |�1�2
2 , η5

23 = 2
√

ξ
(
2ξ̄ 3 + e3iϕξ(2 + |ξ |2�1)

)
ξ̄ (3/2)�1�2

2 ,

η5
31 = 2ξ̄ (3/2)

(
e3iϕξ 3 − 2ξ̄�1

)
ξ (3/2)�1�2

2 , η5
32 = −2

√
ξ̄
(
2e3iϕξ 3 + ξ̄ (2 + |ξ |2�1)

)
ξ (3/2)�1�2

2 ,

η5
33 = 4(e3iϕξ 2 − ξ̄ 2)

|ξ |�1�2
2 .

(A.4)

Normal η6 is given by

η6 = φ†s6φ = ie− 3iϕ
2 η6

ij ,
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where

η6
11 = −2|ξ |(e3iϕξ − ξ̄

)
�2

2 , η6
12 = 2ξ (3/2)

(
2e3iϕ�1 − ξ̄ 2

)√
ξ̄�1�2

2
,

η6
13 = −ξ (3/2)

(
4e3iϕ�1 + |ξ |2ξ̄ 2�3

)
ξ̄ (3/2)�1�2

2 , η6
21 = −2ξ̄ (3/2)

(
2 − e3iϕξ 2 + 2|ξ |2)√

ξ�1�2
2 ,

η6
22 = −4|ξ |(e3iϕξ − ξ̄

)
�1�2

2 , η6
23 = 2ξ (3/2)

(
2e3iϕ + ξ̄ 2�3

)√
ξ̄�1�2

2
,

η6
31 = ξ̄ (3/2)

(
4 + 4|ξ |2 + e3iϕ |ξ |2ξ 2�3

)
ξ (3/2)�1�2

2 , η6
32 = −2ξ̄ (3/2)

(
2 + e3iϕξ 2�3

)
√

ξ�1�2
2 ,

η6
33 = 2|ξ |(e3iϕξ − ξ̄

)
�3

�1�2
2 .

(A.5)

Normal η7 is given by

η7 = φ†s7φ = e− 3iϕ
2 η7

ij ,

where

η7
11 = −2|ξ |(e3iϕξ 2 + ξ̄ 2

)
�2

2 , η7
12 =

√
ξ
(
4e3iϕξ 2�1 − ξ̄ 2(2 + |ξ |2�1)

)√
ξ̄�1�2

2
,

η7
13 = −2ξ (3/2)

(
ξ̄ 3 + 2e3iϕξ�1

)
ξ̄ (3/2)�1�2

2 , η7
21 =

√
ξ̄
(
4ξ̄ 2�1 − e3iϕξ 2(2 + |ξ |2�1)

)
√

ξ�1�2
2 ,

η7
22 = 2

(
e3iϕξ 2 + ξ̄ 2

)(
2 + |ξ |2�1

)
|ξ |�1�2

2 , η7
23 = 2

√
ξ
(
2ξ̄ 3 − e3iϕξ(2 + |ξ |2�1)

)
ξ̄ (3/2)�1�2

2 ,

η7
31 = −2ξ̄ (3/2)

(
e3iϕξ 3 + 2ξ̄�1

)
ξ (3/2)�1�2

2 , η7
32 = 2

√
ξ̄
(
2e3iϕξ 3 − ξ̄ (2 + |ξ |2�1)

)
ξ (3/2)�1�2

2 ,

η7
33 = −4

(
e3iϕξ 2 + ξ̄ 2

)
|ξ |�1�2

2 .

(A.6)

The last normal is given by

η8 = φ†s8φ = e− 3iϕ
2 η8

ij ,

where

η8
11 = 2|ξ |(e3iϕξ + ξ̄

)
�2

2 , η8
12 = −2ξ (3/2)

(
ξ̄ 2 + 2e3iϕ�1

)√
ξ̄�1�2

2
,

η8
13 = ξ (3/2)

(
4e3iϕ�1 − |ξ |2ξ̄ 2�3

)
ξ̄ (3/2)�1�2

2 , η8
21 = −2ξ̄ (3/2)

(
2 + e3iϕξ 2 + 2|ξ |2)√

ξ�1�2
2 ,

η8
22 = 4|ξ |(e3iϕξ + ξ̄

)
�1�2

2 , η8
23 = −2ξ (3/2)

(
2e3iϕ − ξ̄ 2�3

)√
ξ̄�1�2

2
,

η8
31 = ξ̄ (3/2)

(
4 + 4|ξ |2 − e3iϕ |ξ |2ξ 2�3

)
ξ (3/2)�1�2

2 , η8
32 = 2ξ̄ (3/2)

(
e3iϕξ 2�3 − 2

)
√

ξ�1�2
2 ,

η8
33 = −2|ξ |(e3iϕξ + ξ̄

)
�3

�1�2
2 .

(A.7)
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